Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex.
نویسندگان
چکیده
One challenge for plant biology has been to identify floral stimuli at the shoot apex. Using sensitive and specific gas chromatography-mass spectrometry techniques, we have followed changes in gibberellins (GAs) at the shoot apex during long day (LD)-regulated induction of flowering in the grass Lolium temulentum. Two separate roles of GAs in flowering are indicated. First, within 8 h of an inductive LD, i.e. at the time of floral evocation, the GA(5) content of the shoot apex doubled to about 120 ng g(-1) dry weight. The concentration of applied GA(5) required for floral induction of excised apices (R.W. King, C. Blundell, L.T. Evans [1993] Aust J Plant Physiol 20: 337-348) was similar to that in the shoot apex. Leaf-applied [(2)H(4)] GA(5) was transported intact from the leaf to the shoot apex, flowering being proportional to the amount of GA(5) imported. Thus, GA(5) could be part of the LD stimulus for floral evocation of L. temulentum or, alternatively, its increase at the shoot apex could follow import of a primary floral stimulus. Later, during inflorescence differentiation and especially after exposure to additional LD, a second GA action was apparent. The content of GA(1) and GA(4) in the apex increased greatly, whereas GA(5) decreased by up to 75%. GA(4) applied during inflorescence differentiation strongly promoted flowering and stem elongation, whereas it was ineffective for earlier floral evocation although it caused stem growth at all times of application. Thus, we conclude that GA(1) and GA(4) are secondary, late-acting LD stimuli for inflorescence differentiation in L. temulentum.
منابع مشابه
Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene.
Seasonal control of flowering often involves leaf sensing of daylength coupled to time measurement and generation and transport of florigenic signals to the shoot apex. We show that transmitted signals in the grass Lolium temulentum may include gibberellins (GAs) and the FLOWERING LOCUS T (FT) gene. Within 2 h of starting a florally inductive long day (LD), expression of a 20-oxidase GA biosynt...
متن کاملLong-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation.
Long-day exposure of the grass Lolium temulentum may regulate flowering via changes in gibberellin (GA) levels. Therefore, we have examined both GA levels and expression of a MYB transcription factor that is specific to the GA signal transduction pathway in monocots. This MYB gene from L. temulentum shows over 90% nucleotide identity with the barley and rice GAMYB genes, and, like them, gibbere...
متن کاملGA4 Is the Active Gibberellin in the Regulation of LEAFY Transcription and Arabidopsis Floral Initiation W
Flower initiation in Arabidopsis thaliana under noninductive short-day conditions is dependent on the biosynthesis of the plant hormone gibberellin (GA). This dependency can be explained, at least partly, by GA regulation of the flower meristem identity gene LEAFY (LFY) and the flowering time gene SUPPRESSOR OF CONSTANS1. Although it is well established that GA4 is the active GA in the regulati...
متن کاملFlowering as metamorphosis: two sequential signals regulate floral initiation in Lolium temulentum.
We investigated floral initiation in the long-day monocot Lolium temulentum, strain Ceres, by culturing apices explanted from photoperiodically induced plants at various times after one inductive long day onto medium with, and without, gibberellin. Apices cultured on the first day after the inductive long day usually required gibberellin in the medium to initiate floral morphogenesis while apic...
متن کاملGA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation.
Flower initiation in Arabidopsis thaliana under noninductive short-day conditions is dependent on the biosynthesis of the plant hormone gibberellin (GA). This dependency can be explained, at least partly, by GA regulation of the flower meristem identity gene LEAFY (LFY) and the flowering time gene SUPPRESSOR OF CONSTANS1. Although it is well established that GA(4) is the active GA in the regula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 127 2 شماره
صفحات -
تاریخ انتشار 2001